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Abstract

The complex extension modulus, the complex shear modulus and the complex Poisson’s ratio
at room temperature have been identified from strain measurements on test bars made of
polymethyl methacrylate (PMMA) and polypropylene (PP) which were subjected to axial and torsional
impacts. Bars of each material with diameters 10 and 20mm were tested at low and high levels of
excitation for each mode of impact. The complex moduli were identified from the normal and shear
strain histories at five non-uniformly distributed bar sections, while the complex Poisson’s ratio
was determined from the circumferential and axial normal strain histories at a single bar section.
With the 10mm test bars, satisfactory results were obtained from about 1 to 40 kHz for PMMA and
from about 1 to 15 kHz for PP. Under the conditions of the tests, the responses of both materials
were found to be very close to linear and nearly isotropic. The deviation from isotropy was larger
for PP than that for PMMA, especially for the 10mm test bars. A certain influence of the test bar
dimension on the complex moduli was observed, especially for PP at low frequencies. The influence
of test bar dimension on the observed deviation from isotropy and on the complex moduli for PP is
believed to be partly due to the extrusion and cooling processes used for fabrication of the PP
test bars.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to assess whether the response of a viscoelastic material to a mechanical
load is linear or non-linear and whether it is isotropic or anisotropic is a prerequisite for the use of
such materials in engineering. If a viscoelastic material has a linear response, its constitutive
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properties can be represented by two or more complex-valued functions of angular
frequency o: If the response is also isotropic, the number of independent such constitutive
functions is minimal. Examples of constitutive functions in common use for isotropic materials
are the complex extension modulus EðoÞ; the complex shear modulus GðoÞ and the complex
Poisson’s ratio nðoÞ; which are interrelated by G ¼ E=2ð1þ nÞ: The relative magnitudes of the
complex moduli for a given material has been considered by Theocaris [1], while the general
frequency dependencies of these moduli and of the complex Poisson’s ratio have been examined
by Pritz [2].
Methods for identification of constitutive functions at relevant frequencies and temperatures

have important uses in engineering. For components and structures which are loaded
dynamically, frequencies of interest may typically vary from hundreds of Hz to tens of kHz.
In this frequency range, use can be made of identification methods based on wave propa-
gation in a test specimen. Several such methods for identification of the complex extension
modulus [3–18], the complex shear modulus [19] and the complex Poisson’s ratio [20] have been
developed.
Methods based on measurement of waves which do not overlap at instrumented sections have

been employed by, for example, Refs. [3–9]. In the cases of quasi-longitudinal or torsional waves
such methods require only two independent measurements, or one if a boundary condition is
used, and they are mathematically simple. However, they may require relatively long test bars.
Methods which permit overlap of waves at instrumented sections have been used by, for example,
Refs. [10–18]. Such methods admit the use of relatively short test bars. However, they require at
least three independent measurements for quasi-longitudinal or torsional waves, or two if a
boundary condition is used, and they are mathematically more complex. In the case of flexural
waves in beams they require at least five independent measurements, or four if a boundary
condition is used [17].
The aim of this study was to develop a procedure, based on propagation of waves in a single test

bar, for the identification of the complex extension modulus EðoÞ; the complex shear modulus
GðoÞ and the complex Poisson’s ratio nðoÞ: Inherent in this procedure was the assessment of
linearity, isotropy and dependence on test specimen, and the procedure was applied to two
materials of importance in engineering, viz., polymethyl methacrylate (PMMA) and poly-
propylene (PP).
The wave propagation method employed for the complex moduli was the one used by

Hillstr .om et al. [16]. This method, originally used for identification of the complex extension
modulus from analysis of quasi-longitudinal waves, was adapted to identification of the
complex shear modulus from analysis of torsional waves. Normal and shear strain histories were
measured at four sections of a cylindrical test bar with circular cross-section subjected to axial and
torsional impact, respectively. Use was also made of the boundary conditions at the free non-
impacted ends of the test bars, which means that two strain measurements were redundant. The
complex Poisson’s ratio was identified on the basis of measured strain histories in the
circumferential and axial directions at a single section of a cylindrical test bar subjected to
axial impact.
The 1D model used for the two types of waves and the identification method are presented in

Section 2, and the experimental equipment and procedures are presented in Section 3. The results
are presented and discussed in Section 4. Nomenclature is listed in Appendix A.
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2. Theory

2.1. Quasi-longitudinal and torsional waves in a test bar

Consider propagation of quasi-longitudinal or torsional waves in a straight cylindrical test bar
with circular cross-section and radius a: Let the material of the test bar be linearly viscoelastic and
isotropic with density r; complex extension modulus EðoÞ; complex shear modulus GðoÞ and
complex Poisson’s ratio nðoÞ; where o is the angular frequency. Because of the assumed isotropy,
the constitutive properties EðoÞ; GðoÞ and nðoÞ are interrelated through G ¼ E=2ð1þ nÞ: Let r; j;
and z be cylindrical co-ordinates.
The waves considered are governed by the temporally Fourier transformed wave equation

@2#e=@z2 � g2#e ¼ 0: ð1Þ

Here #eðz;oÞ ¼
R
N

�N
eðz; tÞe�iot dt is the temporal Fourier transform of the relevant surface strain,

and gðoÞ ¼ aðoÞ þ ikðoÞ is a wave propagation coefficient defined by

g2ðoÞ ¼ �ro2=MðoÞ; ð2Þ

where MðoÞ is the relevant complex modulus. The damping coefficient aðoÞ is a positive even
function, and the wavenumber kðoÞ is an odd function, positive for o > 0 [21].
The general solution of Eq. (1) is

#eðz;oÞ ¼ #PðoÞe�gðoÞz þ #NðoÞegðoÞz; ð3Þ

where #PðoÞ and #NðoÞ are complex amplitudes of harmonic waves travelling in the directions of
increasing and decreasing z; respectively. For o > 0; the wavelength l can be expressed in terms of
the wavenumber k as

lðoÞ ¼ 2p=kðoÞ: ð4Þ

In the case of quasi-longitudinal waves eðz; tÞ ¼ ezzða; z; tÞ and MðoÞ ¼ EðoÞ; and Eq. (1) is
based on the assumptions that plane cross-sections remain plane, stress is uni-axial and the effect
of radial inertia can be neglected. Also, ezzðr; z; tÞ ¼ ezzða; z; tÞ; szz is the only non-zero component
of stress, and the strains ezz and ejj are related through #ejjðr; z;oÞ ¼ �nðoÞ#ezzðr; z;oÞ: As, in
particular, this relation is valid for r ¼ a; it is possible to obtain the complex Poisson’s ratio
directly from measured surface strains #ejj0ðoÞ and #ezz0ðoÞ at z ¼ z0 as

nðoÞ ¼ �#ejj0ðoÞ=#ezz0ðoÞ: ð5Þ

Because of the simplifying assumptions made, the results obtained from this 1D model can be
expected to be accurate if and only if the wavelength is much larger than the transverse dimension
of the bar, i.e.,

lLðoÞca: ð6Þ

In the case of torsional waves, eðz; tÞ ¼ ejzða; z; tÞ and MðoÞ ¼ GðoÞ; and Eq. (1) can derived
from the assumption that plane cross-sections remain plane and rigid as they rotate around the
z-axis. Also, ejzðr; z; tÞ ¼ ðr=aÞejzða; z; tÞ is the only non-zero component of strain. Here, the
assumed 1D mode of motion satisfies the 3D equations of elasticity, in the interior of the bar as
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well as on its cylindrical boundary r ¼ a: Therefore, there is no restriction on the wavelength l=T

corresponding to Eq. (6).

2.2. Identification of complex moduli

The procedure for identification of the complex modulus M; representing E or G; is the same as
that used by Hillstr .om et al. [16] for identification of E: Thus, n surface strains #e1ðoÞ;
#e2ðoÞ;y; enðoÞ at sections z1oz2o?ozn are considered to be known either from measurements
alone or from measurements and the boundary condition at a free bar end (where #eðoÞ is zero).
This gives the system of n equations

AðoÞ #wðoÞ ¼ #eðoÞ; ð7Þ

where

AðoÞ ¼

e�gðoÞz1 egðoÞz1

e�gðoÞz2 egðoÞz2

^ ^

e�gðoÞzn egðoÞzn

2
66664

3
77775; #wðoÞ ¼

#PðoÞ
#NðoÞ

" #
; #eðoÞ ¼

#e1ðoÞ

#e2ðoÞ

^
#enðoÞ

2
6664

3
7775; ð8Þ

and the three complex-valued functions gðoÞ; PðoÞ and NðoÞ are unknown. If system (7) can be
solved for gðoÞ; the complex modulus MðoÞ can be obtained from Eq. (2).
If n=3, there generally exists an exact solution for gðoÞ which corresponds to the requirements

on aðoÞ and kðoÞ: At certain frequencies, however, there may not exist a solution. If n > 3; system
(7) is over-determined, and generally there is no exact solution for gðoÞ: In this case, however, it is
generally possible to find a best approximate solution in the sense of least squares. This solution is
obtained by minimizing the error

*eð #w; gÞ ¼ jjA #w� #ejj=jj#ejj; ð9Þ

where double bars denote Euclidian norm, with respect to #w and g: Here, the minimization is
carried out in two steps as follows. First, *eð #w; gÞ is minimized with respect to #w for a given g by
letting

#w ¼ #wLSðgÞ ¼ Aþ #e; ð10Þ

where Aþ ¼ ðA�AÞ�1A� is the Moore–Penrose pseudo-inverse matrix of A; and A� is the adjoint
(complex conjugate and transpose) matrix of A: Then, in the second step, *eð #wLSðgÞ; gÞ is minimized
numerically with respect to g:

3. Experiments

3.1. Test bars and instrumentation

Two different test bars with nominally circular cross-section of each of two different materials
were used to identify the complex extension modulus EðoÞ and the complex Poisson’s ratio nðoÞ
from quasi-longitudinal wave tests and the complex shear modulus GðoÞ from torsional wave
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tests. The two materials used were polymethyl methacrylate (PMMA) and polypropylene (PP),
and for each of them one test bar had diameter 10mm and approximate length 1000mm and the
other had diameter 20mm and approximate length 2000mm.
PMMA is an amorphous thermoplastic with density 1183 kg/m3, and PP is a semi-crystalline

thermoplastic with density 915 kg/m3. The test bars made of PMMA had been produced from
moulded plates which had been cut into bars with rectangular cross-sections and then machined
to obtain their final shape and dimensions. The test bars made of PP had been extruded from the
melted raw material into their approximate final shape and dimensions. As they had been cooled
in air on a flat surface, their cross-sections were slightly elliptical (with axis ratio E 1.05).
Each test bar was instrumented at four different sections (z ¼ z2 to z5) with strain gauges for

measurement of the normal strains ezz and the shear strains ejz: Use was also made of the
circumstance that at a free end (z ¼ z1) of a bar these strains are zero, which provided n ¼ 5
strains, two of which were redundant, for the identification of the complex extension modulus
EðoÞ and the complex shear modulus GðoÞ; respectively. In addition, each bar was instrumented
at a fifth section (z ¼ z0) with strain gauges for measurement of the normal strains ezz and ejj
needed for the identification of the complex Poisson’s ratio nðoÞ: The strain gauges were glued
with cyanocrylate bond. The strain gauge configurations and the types of strain gauges used for
the three kinds of strain measurements and the two test bar sizes are presented in Table 1.
For each strain to be measured, two diametrically opposite strain gauges were used and

connected to a bridge amplifier (Measurement Group 2210) in such a way that they assisted each
other in the production of output signals. As a consequence, the output signal representing the
axial strain ezz became insensitive to bending which might arise due to slight eccentricity or some
other imperfection. The bridge amplifiers were followed by aliasing filters (DIFA Measuring
Systems, PDF), and the filtered signals were recorded by means of a four-channel digital
oscilloscope (Nicolet Pro 20). The cut-off frequency and the sampling interval, respectively, were
chosen differently in different tests. The recorded signals were transferred to a PC computer for
processing. Shunt calibration was used.

3.2. Quasi-longitudinal wave tests

The experimental set-up for identification of the complex extension modulus EðoÞ is shown in
Fig. 1. The test bars were suspended horizontally by thin wires and impacted axially on a flat end
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Table 1

Strain gauge

types and configurations

Strain gauge

configuration

Measured

strain

Strain gauge type Distances of strain gauges from

free end (mm)

E10 ezz TML GFRA-3-50-1L 145 323 539 800

G10 ezj TML GFRA-3-50-1L 147.5 325.5 541.5 802.5

N10 ezz,ejj TML FCB-2-23-1L 840

E20 ezz TML GFLA-6-350-70 280 636 1068 1590

G20 ezj TML QFCT-2-350-11-6F-1L 280 636 1068 1590

N20 ezz,ejj TML GFLA-6-350-70 986
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by projectiles fired from an air gun. For the 10mm test bars, use was made of lead bullets with
mass 0.54 g and approximate impact velocities 60 and 90 m/s at low and high levels of excitation,
respectively. For the 20mm test bars, the projectiles used had diameter 8mm and length 10mm,
were made of the same material as the test bars, and had approximate impact velocities 90–140
and 200–500 m/s at low and high levels of excitation, respectively. The non-impacted end of each
test bar (z ¼ z1) was kept free. One normal strain ezz was measured at each of four sections (z ¼ z2
to z5). The conditions for eight tests (1–8) carried out with the two materials, the two bar
diameters and the two excitation levels are defined in Table 2.
The experimental set-up for identification of the complex Poisson’s ratio nðoÞ was similar but

only two normal strains ezz and ejj at a single section (z ¼ z0) associated with the passage of the
incident pulse were measured. The conditions for four tests (9–12) carried out with the two
materials and the two bar diameters are defined in Table 2.

3.3. Torsional wave tests

The experimental set-up for identification of the complex shear modulus GðoÞ is shown in
Fig. 2. The 10mm test bars were suspended horizontally by thin wires and by a slide bearing at the
impacted end. Immediately outside the bearing, the originally flat end of each test bar had been
modified by removing a 90� sector over a length of 7mm. One of the flat surfaces of the resulting
open sector was impacted in the normal direction (i.e., transversely to the bar axis) by a projectile
fired from an air gun so that the bar end was subjected to combined torsion and bending. Because
of the bearing, however, the instrumented part of the test bar was subjected to torsion but
prevented from bending. The 20mm test bars were kept in vertical position by slide bearings at
each end. Torsion in the instrumented parts of the test bars was generated similar to that in the
10mm bars. However, a high-strength aluminium ring with a flat surface was clamped on the
impacted end instead of removing a 90� sector. For the 10mm test bars, use was made of lead
bullets with mass 0.54 g and approximate impact velocities 60 and 90m/s at low and high levels of
excitation, respectively. For the 20mm test bars, the projectiles used had diameter 8mm and
length 10mm, were made of the same material as the test bars, and had approximate impact
velocities 90–140 and 200–500m/s at low and high levels of excitation, respectively. The non-
impacted end of each test bar (z ¼ z1) was kept free. One shear strain ejz was measured at each of
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Fig. 1. Experimental set-up for identification of the complex extension modulus E and the complex Poisson’s ratio n on
the basis of quasi-longitudinal wave propagation tests with 10 and 20mm test bars.
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Table 2

Test conditions

Test Quantity Material Diameter Excitation Strain gauges Cut-off freq. Sampling freq. Max strain Temp.

(mm) (kHz) (kHz) (� 10�3) (�C)

1 E PMMA 10 High E10 100 500 3.8 20.5

2 E PMMA 10 Low E10 100 500 2.0 20.5

3 E PMMA 20 High E20 35 100 2.4 21.0

4 E PMMA 20 Low E20 35 100 1.1 21.0

5 E PP 10 High E10 100 500 2.8 21.5

6 E PP 10 Low E10 100 500 0.15 21.5

7 E PP 20 High E20 35 100 1.2 21.2

8 E PP 20 Low E20 35 100 0.36 21.2

9 n PMMA 10 – N10 100 500 2.4 22.4

10 n PMMA 20 – N20 35 100 2.1 22.0

11 n PP 10 – N10 100 500 2.3 22.6

12 n PP 20 – N20 35 100 0.39 21.5

13 G PMMA 10 High G10 100 500 5.2 22.0

14 G PMMA 10 Low G10 100 500 2.7 22.0

15 G PMMA 20 High G20 20 100 3.3 21.0

16 G PMMA 20 Low G20 35 100 0.94 22.0

17 G PP 10 High G10 100 500 5.1 21.7

18 G PP 10 Low G10 100 500 3.0 21.7

19 G PP 20 High G20 35 100 1.4 21.9

20 G PP 20 Low G20 35 100 0.47 21.9

Fig. 2. Experimental set-up for identification of the complex shear modulus G on the basis of torsional wave

propagation tests with horizontal 10mm and vertical 20mm test bar.
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four sections (z ¼ z2 to z5). The conditions for eight tests (13–20) carried out with the two
materials, the two bar diameters and the two excitation levels are defined in Table 2.

4. Results and discussion

The wavelength l; the complex extension modulus E; the complex shear modulus G; the
complex Poisson’s ratio n and related quantities for PMMA and PP, obtained experimentally at
room temperature with 10 and 20mm test bars at high and low levels of impact excitation, are
shown versus frequency f ¼ o=2p in Figs. 3–13. Each result for l; E; G and n is based on a single
test, and only Figs. 9 and 10 contain results which are based on tests with low-level impact
excitation.
The dispersion relationships for quasi-longitudinal and torsional waves in the test bars,

expressed as wavelength l versus frequency f ; are shown in Fig. 3 for PMMA and in Fig. 4 for PP.
For PMMA, the wavelength of quasi-longitudinal waves is approximately 55mm or 11a at
40 kHz for the 10mm test bar and 150mm or 15a at 15 kHz for the 20mm test bar. For PP, the
wavelength of quasi-longitudinal waves is approximately 120mm or 24a at 15 kHz for the 10mm
test bar and 150mm or 15a at 12 kHz for the 20mm test bar. Because of condition (6) and
convergence problems above certain frequencies for PP, results are shown for PMMA up to 40
and 15 kHz for the 10 and 20mm test bars, respectively, and for PP up to 15 kHz for both test
bars.
The complex moduli E and G; and the complex Poisson’s ratio n; are shown versus frequency f

in Fig. 5 for PMMA and in Fig. 6 for PP. For PMMA the real parts of E and G increase
at low frequencies and are nearly constant at higher frequencies. The imaginary parts appear to
have maxima at low frequencies and are nearly constant at higher frequencies. For PP the
behaviour of the real parts of E and G are similar to those of PMMA, while the imaginary parts
increase at low frequencies and are nearly constant at higher frequencies. For both PMMA and
PP n is, apart from the noise, approximately real and constant throughout the frequency ranges
studied.
The loss angles dE ¼ argðEÞ and dG ¼ argðGÞ associated with the complex moduli are shown

versus frequency f in Fig. 7 for PMMA and in Fig. 8 for PP. For PMMA these loss angles have
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Fig. 3. Wavelength l versus frequency f for quasi-longitudinal (index L) and torsional (index T) waves in 10 and 20mm

PMMA test bars.
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maxima somewhere between 5�and 9� at low frequencies, and they decrease to about 2� at higher
frequencies. For PP these loss angles are about 8–12� in the frequency range studied. This
confirms that PP has higher losses than PMMA.
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Fig. 4. Wavelength l versus frequency f for quasi-longitudinal (index L) and torsional (index T) waves in 10 and 20mm

PP test bars.

Fig. 5. Complex extension modulus E, complex shear modulus G and complex Poisson’s ratio n of PMMA versus

frequency f for 10 and 20mm test bars.
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Figs. 5 and 6 show that for the 20mm test bars, the identification procedure for E and G

suffered from convergence problems at higher frequencies, especially for PP. The reason is that it
was more difficult to achieve sufficient excitation at high frequencies with the 20mm test bars than
with the 10mm ones, and with PP than with PMMA due to the higher losses. In the case of G; the
difficulty with the 20mm test bars was largely due to the filtering effect of the aluminium ring
clamped on the impacted bar end.
The ratios of the complex extension moduli EHI=ELO and of the complex shear moduli GHI=GLO

at high (index HI) and low (index LO) levels of impact excitation are shown versus frequency f in
Fig. 9 for PMMA and in Fig. 10 for PP. For both materials, these ratios are approximately real
and equal to unity, which indicates that the responses are very close to linear under the conditions
of the tests.
The ratio 2ð1þ nÞG=E is shown versus frequency f in Fig. 11 for PMMA and in Fig. 12 for PP.

For a material with isotropic response, this ratio is expected to be real and equal to unity. For
PMMA with both test bars and for PP with the 20mm test bar, this is approximately the case.
For PP with the 10mm test bar, the ratio is approximately real but somewhat smaller than unity
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Fig. 6. Complex extension modulus E, complex shear modulus G and complex Poisson’s ratio n of PP versus frequency

f for 10 and 20mm test bars.
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(E 0.9), which indicates a certain degree of anisotropy. It is believed that some real anisotropy
may be due to the extrusion process used for fabrication of the PP test bars. If this process affects
the orientation of molecules within a certain depth under the surface, the influence on the 10mm
test bars can be expected to be larger than that on the 20mm test bars. Some apparent anisotropy
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Fig. 7. Loss angles dE ¼ argðEÞ and dG ¼ argðGÞ of PMMA versus frequency f for 10 and 20mm test bars.

Fig. 8. Loss angles dE ¼ argðEÞ and dG ¼ argðGÞ of PP versus frequency f for 10 and 20mm test bars.

S. Mousavi et al. / Journal of Sound and Vibration 277 (2004) 971–986 981



may be due to the slight deviation from circular shape of the cross-sections of the PP test bars
caused by the cooling process. This deviation can be expected to have a certain effect on the
estimated value of G but not on that of E:
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Fig. 9. Ratios of complex extension moduli EHI=ELO and complex shear moduli GHI=GLO of PMMA at high (HI) and

low (LO) levels of impact excitation versus frequency f for 10 and 20mm test bars.

Fig. 10. Ratios of complex extension moduli EHI=ELO and complex shear moduli GHI=GLO of PP at high (HI) and low

(LO) levels of impact excitation versus frequency f for 10 and 20mm test bars.
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Fig. 12. Ratio 2ð1þ nÞG=E of PP versus frequency f for 10 and 20mm test bars.

Fig. 11. Ratio 2ð1þ nÞG=E of PMMA versus frequency f for 10 and 20mm test bars.

Fig. 13. Ratios of complex extension moduli E20=E10 and complex shear moduli G20=G10 of PMMA and PP versus

frequency f for 10 and 20mm test bars.
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The ratios of complex extension moduli E20=E10 and of complex shear moduli G20=G10 are
shown versus frequency f for PMMA and PP in Fig. 13, where indices 10 and 20 refer to the
diameters in mm of the test bars. If the results of the identification procedures do not depend on
the test bars, and the mechanical properties of each material are the same for the 10 and 20mm
test bars, these ratios are expected to be real and equal to unity. For PMMA this is approximately
the case for both ratios of complex moduli except at low frequencies, where there is a certain
deviation. For PP the deviation from unity is larger, especially at low frequencies. It is believed
that this larger deviation for PP may be partly due to the different effects of the extrusion process
on the 10 and 20mm test bars.

5. Conclusions

The complex extension modulus, the complex shear modulus and the complex Poisson’s ratio at
room temperature have been identified for polymethyl methacrylate (PMMA) and polypropylene
(PP) in the approximate frequency range 1–40 kHz for PMMA and 1–15 kHz for PP. The
responses of both materials were found to be very close to linear and nearly isotropic under the
conditions of the tests. The deviation from isotropy was larger for PP than that for PMMA,
especially for the 10mm test bars. A certain influence of the test bar dimension on the complex
moduli was observed, especially for PP at low frequencies. The influence of test bar dimension on
the observed deviation from isotropy and on the complex moduli for PP is believed to be partly
due to the extrusion and cooling processes used for fabrication of the PP test bars.
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Appendix A. Nomenclature

a radius of cross-section
A matrix (n� 2)
E complex extension modulus
*e error
f frequency (¼ o=2p)
G complex shear modulus
k wavenumber (¼ 2p=l)
M complex modulus (= E or G)
n number of equations or elements
#N complex amplitude of harmonic wave
#P complex amplitude of harmonic wave
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r radial co-ordinate
t time
#w amplitude vector (2� 1; elements #P; #N)
z axial co-ordinate
a damping coefficient
g wave propagation coefficient (= a+ik)
d loss angle
e strain (extension or shear)
#e strain vector (n� 1; elements #e1; #e2;y; #en )
l wavelength (= 2p/k)
n complex Poisson’s ratio
r density
j angular co-ordinate
o angular frequency (= 2pf )
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